

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P71950A
Publications Code 4CH1_1C_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks
1 (a) (i	(i)	<u>fractional</u> distillation		1
(i	ii)	chromatography		1
(ii	ii)	simple distillation	ACCEPT distillation	1
(b)		M1 A mixture of copper(II) oxide and copper(II) sulfate can be separated by first dissolving the copper(II) sulfate in distilled water. M2 The copper(II) oxide is then removed by filtering M3 Some of the water from the copper(II) sulfate solution is then removed by evaporating	ACCEPT filtration ACCEPT evaporation ACCEPT simple	4
		M4 A pure sample of hydrated copper(II) sulfate is then obtained by crystallisation	distillation ACCEPT crystallising	Total 7

Quest		Answer	Notes	Marks
2 (a)	(i)	(hydrated) iron(III) oxide / Fe ₂ O ₃	IGNORE iron oxide	1
			REJECT iron(II) oxide	
	(ii)	D oxidation		1
		A is incorrect as it is not a combustion reaction B is incorrect as it is not a decomposition reaction C is incorrect as it is not a neutralisation reaction		
	(iii)	zinc	ALLOW Zn	1
(b)	(i)	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$	ALLOW multiples and fractions	1
			IGNORE state symbols even if incorrect	
	(ii)	(squeaky) pop with lighted splint/lit with a (Bunsen) flame	IGNORE just 'burns with a squeaky pop'	1
			REJECT use of glowing splint	
(C)	(i)	displacement	ACCEPT redox /oxidation <u>and</u> reduction	1
	(ii)	pink-brown /pink (solid)	ACCEPT pink / brown / orange alone or in combinations eg orange-brown	1
			ALLOW red-brown	
			REJECT red	
			IGNORE copper	
(d)		iron is less reactive/lower in the reactivity series (than magnesium) ORA	IGNORE just 'iron is not reactive enough' with no comparison	1
				Total 8

Question number	Answer	Notes	Marks
3 (a)	Type of bonding Type of structure		4
	(X) covalent simple molecular		
	(Y) M1 covalent M2 giant (covalent)	ALLOW giant molecular /giant covalent lattice ACCEPT macromolecular	
	(Z) M3 ionic M4 giant (ionic) <u>lattice</u>	ALLOW (ionic) lattice IGNORE 'giant' alone	
(b)	An explanation that links the following points		2
	M1 (X has) weak intermolecular forces / weak forces between molecules	ALLOW weak intermolecular bonds / weak bonds between molecules	
		IGNORE less energy	
	M2 (so) little energy needed to overcome the forces/separate the molecules / the forces require little energy to break	REJECT any reference to weak covalent bonds or covalent bonds being broken or ionic bonds for both marks.	
		REJECT intermolecular forces between atoms/bonds for both marks	
			Total 6

Question number	Answer	Notes	Marks
4 (a) (i)	Any two from M1 same general formula M2 same functional group	IGNORE references to a specific homologous series	2
	M3 each member differs from the next by CH ₂		
	M4 similar chemical properties / (chemical) reactions	ALLOW same chemical properties / (chemical) reactions	
	M5 trend/change/increase in physical properties	ACCEPT named physical property e.g. trend in boiling points	
		REJECT same / similar physical properties	
(ii)	H	ACCEPT any combination of dots and crosses	2
	$C \stackrel{\Diamond}{\stackrel{\Diamond}{\otimes}} C$	ACCEPT with or without shells drawn	
	Н	IGNORE inner shells on carbon atoms	
	M1 two shared pairs of electrons between two carbon atoms	REJECT if non-bonding electrons shown on carbon	
	M2 shared pair of electrons between each hydrogen and the carbon it is bonded to	REJECT if non-bonding electrons shown on hydrogen	
(b) (i)	There are twice as many hydrogen atoms as carbon atoms (in every alkene) OWTTE	ACCEPT general formula is C_nH_{2n} ACCEPT it is the lowest whole number ratio of atoms in alkenes	1
(ii)	H H C H	ALLOW methyl group to be shown as -CH ₃ rather than fully displayed	2
	M2 H H	IGNORE brackets and n REJECT structure without extension bonds	

Question number	Answer	Notes	Marks
4 (c) (i)	M1 (molecular formula) C ₄ H ₆		2
	M2 (empirical formula) C ₂ H ₃		
(ii)	An explanation that links the following three points		3
	M1 made up of carbon/C and hydrogen/H (atoms)	REJECT carbon and hydrogen molecules in M1	
	M2 only	M2 dep on mention of just carbon and hydrogen in M1	
	M3 contains (two) C=C / (carbon-carbon) double bonds	ALLOW contains a (carbon-carbon) double bond	
(iii)	A description that refers to the following two points		2
	M1 add bromine water	REJECT add bromine for M1	
	M2 (bromine water) decolourised / turns (from orange/yellow to) colourless	M2 dep on reference to bromine in M1	
		IGNORE incorrect initial colour	
		REJECT if reference to uv being needed for reaction to take place	
			Total 14

Question number	Answer	Notes	Marks
5 (a) (i)	Any two from:		2
	M1 effervescence/fizzing/bubbles	IGNORE hydrogen / gas formed	
	M2 lithium becomes smaller/disappears	ALLOW lithium dissolves	
	M3 moves (across the surface)	IGNORE melts / forms a ball / flame	
(ii)	M1 (solution turns) yellow		2
	M2 (solution is) an alkali/alkaline	ACCEPT lithium hydroxide / hydroxide ions / OH- ions formed	
		ALLOW basic	
(b)	A description that refers to the following five points		5
	M1 flame test	ACCEPT description of flame test IGNORE 'burning'	
	M2 red (flame)	ACCEPT crimson REJECT brick-red	
	M3 add (dilute hydrochloric) acid	ACCEPT nitric or sulfuric acid REJECT if additional incorrect reagent given eg silver nitrate	
	M4 (pass/bubble) gas/carbon dioxide into limewater	M4 dep on acid in M3	
	M5 (limewater) turns cloudy/milky / white ppt forms	M5 dep on use of limewater	
		No M4 or M5 if limewater added directly to the solution	
(c)	M1 <u>electrostatic</u> attraction		2
	M2 between oppositely charged ions	ACCEPT between anions/negative ions and cations/positive ions	
		REJECT implication of covalent bonding for M2	
			Total 11

	Questio		Answer	Notes	Marks
6	numbe (a)	(i)	$Pb(NO_3)_2(aq) + 2KCI(aq) \rightarrow PbCI_2(s) + 2KNO_3(aq)$	ALLOW upper case letters	1
		(ii)	Pb ²⁺ and NO ₃ ⁻	for state symbols	1
		(iii)	M1 207 + (14 + 16 × 3) × 2	Correct answer without working scores	2
			M2 331	ALLOW ECF on M1 if other multiples of atomic masses added together eg 207 + 14 + (16 x 3) = 269 for 1 mark	
				REJECT use of atomic numbers for both marks	
	(b)	(i)	all points plotted correctly to the nearest grid line		1
		(ii)	point at 2.9 cm/6.0 cm ³ circled	ALLOW ecf from incorrect plotting	1
		(iii)	M1 best fit straight line through first four points ignoring the anomalous point		2
			M2 horizontal straight line through last three points	ALLOW max (1) if lines do not cross or meet, or if a smooth curve is drawn, avoiding the anomalous point	
		(i∨)	Any two from		2
			M1 precipitate not allowed to settle	ACCEPT height measured too soon	
			M2 height (of precipitate) measured incorrectly eg reference to parallax when measuring height		
			M3 more than 2 cm³ (of lead(II) nitrate) added / (total volume of lead(II) nitrate added was) more than 6 cm³	ALLOW too much lead(II) nitrate added	
		(v)	no precipitate as no lead(II) nitrate added OWTTE		1
		(vi)	value read from graph where lines cross	no mark if lines do not cross/meet or if there aren't two lines eg a curve is drawn	1
					Total 12

Question number	Answer	Notes	Marks
7 (a)	M1 (number of protons) 53		2
	M2 (number of neutrons) (127 - 53 =) 74		
(b)	M1 79 × 52.8 + 81 × 47.2 OR 7994.4	correct answer without working	3
	M2 7994.4 ÷ 100 OR 79.944	scores 3	
	M3 79.9	79.944 without working scores 2	
		M3 dep on use of 79 & 81 in calculation	
(c)	M1 (amount of AICI ₃ =) $26.7 \div 133.5$ OR $0.2(00)$ (mol)	correct answer without working scores 3	3
	M2 (amount of $CI_2 = $) $0.2(00) \times 3$ OR 0.3(00) (mol)	ALLOW ECF on M1, as long as an attempt has been made to find moles	
	M3 (mass of $Cl_2 =$) 0.3(00) × 71 = 21.3 (g)	ALLOW ECF on M2	
		ALLOW any number of sig figs except 1	
	OR		
	M1 213g of Cl ₂ produces 267g of AlCl ₃		
	M2 (mass of $Cl_2 =$) $\frac{26.7}{267} \times 213$		
	M3 = 21.3 (g)		

(d)	An explanation which links six of the following points		6
	Pair 1 M1 no reaction / no change (in colour) / stays yellow or orange	ACCEPT it stays any stated colour	
	M2 bromine cannot displace chlorine / bromine does not react with chloride ions to produce chlorine	Penalise incorrect use of -ine and -ide	
		ACCEPT $Br_2 + KCI \rightarrow$ $Br_2 + KCI$ or ionic equation	
	M3 therefore chlorine is more reactive than bromine	ACCEPT "bromine cannot displace chlorine because it is less reactive" OWTTE for M2 and M3	
	Pair 2 M4 turns brown	ACCEPT combinations that include brown eg red-brown	
	M5 bromine displaces iodine / bromine reacts with iodide ions to produce iodine	Penalise incorrect use of -ine and -ide	
		ACCEPT $Br_2 + 2KI \rightarrow I_2 + 2KBr$ or ionic equation	
	M6 therefore bromine is more reactive than iodine	ACCEPT "bromine displaces iodine because it is more reactive" OWTTE for M5 and M6	
	M7 the overall order of reactivity is chlorine > bromine > iodine ORA	IGNORE references to reactivity up/down the group	
			Total 14
			10101 14

Question number	Answer	Notes	Marks
8 (a) (i)	to allow the heat (energy) to be distributed evenly (throughout the water) OWTTE	ACCEPT so the temperature is the same (throughout the water)	1
(ii)	to avoid some of the liquid/fuel/pentanol evaporating OWTTE		1
(b)		PENALISE answer not	2
	Initial temperature of water in °C 15.9	to nearest 0.1 °C once only	
	Final temperature of water in °C 50.9	ALLOW ecf on initial temperature	
	Temperature change in °C 35.0	Correct values transposed scores (1)	
(c) (i)	M1 (Q =) 100 × 4.2 × 35 (J)	Correct answer of 14 700 without working scores 2	2
	M2 14 700 (J)	ALLOW 15 000 (J) only if M1 is scored	
(ii)	M1 (mass of pentanol =) 90.11 - 89.75 OR 0.36 (g)	Correct answer without working scores 5	5
	M2 (amount of pentanol =) 0.36 ÷ 88 OR 0.0041 (mol)	ALLOW ecf on incorrect mass	
		REJECT 0.004 (which gives final answer of -3675)	
	M3 14 700 ÷ 0.0041 OR 3 600 000 (J/mol)	ALLOW ecf as long as there has been an attempt to calculate	
	M4 3 600 000 ÷ 1000 OR 3600 (kJ/mol)	moles of pentanol	
	M5 ($\Delta H = 1$ – 3600 (kJ/mol)	ALLOW any SF except 1 SF	
(d)	$C_5H_{11}OH + 7.5O_2 \rightarrow 5CO_2 + 6H_2O$	ALLOW multiples	2
	M1 all formulae correct		
	M2 balancing of correct formulae	M2 dep on M1	
		IGNORE state symbols even if incorrect	
			Total 13

Question number	Answer	Notes	Marks
9 (a) (i)	B 4 A is incorrect as there are not 3 different elements in Na ₂ SO ₄ .7H ₂ O		1
	C is incorrect as there are not 5 different elements in Na ₂ SO ₄ . 7H ₂ O D is incorrect as there are not 10 different elements in Na ₂ SO ₄ . 7H ₂ O		
(ii)	D 28		1
	A is incorrect as there is not a total of 10 atoms in Na_2SO_4 . $7H_2O$ B is incorrect as there is not a total of 22 atoms in Na_2SO_4 . $7H_2O$ C is incorrect as there is not a total of 27 atoms in Na_2SO_4 . $7H_2O$		
(b) (i)	A description that refers to the following two points		2
	M1 heat the sodium sulfate (again)	ACCEPT 'heat to constant mass' for	
	M2 (repeat) until there is no further change in mass	both marks	
(ii)	An explanation that links the following two points		2
	M1 to cool the (water) vapour	ACCEPT steam	
	M2 so it condenses / forms liquid/water		
(iii)	A description that refers to the following two points		2
	M1 heat (the water) / measure the boiling point	ALLOW find the freezing point /melting point?	
	M2 (if it) boils at 100 °C (it is pure water) / boiling point is 100 °C	REJECT evaporate	
	point is 100 °C	ALLOW freezes/ melts at 0°C	
		IGNORE chemical test even if incorrect	

(c)	M1 mass of Na_2SO_4 (= 19.38 – 15.83) = 3.55 (g)	Correct answer without working	5
	M2 mass of H_2O (= 23.88 – 19.38) = 4.50 (g)	scores 5	
	M3 amount of Na_2SO_4 (= 3.55 ÷ 142) = 0.025 (mol)	ALLOW ECF from incorrect M1	
	M4 amount of H_2O (= 4.50 ÷ 18) = 0.25 (mol)	ALLOW ECF from incorrect M2	
	M5 x (= 0.25 ÷ 0.025) = 10	ALLOW an integer ECF on M3 & M4	
		ACCEPT alternative correct methods	
	OR		
	M1 mass of Na_2SO_4 (= 19.38 – 15.83) = 3.55 (g)		
	M2 mass of H_2O (= 23.88 – 19.38) = 4.50 (g)		
	M3 mass of water combined with 1 mole of sodium sulfate = $\frac{142}{3.55}$ × 4.50 = 180 (g)		
	M4 moles of $H_2O = 180 \div 18$		
	M5 therefore, x = 10		
			Total 13

Question number			Answer	Notes	Marks
10	(a)	(i)	M1 0.0036 moles of HCl react with 0.0018 moles of Zn		2
			M2 mass of Zn that reacts is 0.0018 x 65 = 0.117 (g) (which is less than 1.3 g, so zinc is in excess)	ALLOW 0.234 g is less than 1.3g, so zinc in	
			OR	excess for (1)	
			M1 moles of zinc that can react with 0.0036 moles of HCl = 0.0036 / 2 = 0.0018 (mol)		
			M2 moles of Zn present = 1.3 ÷ 65 = 0.02 (mol) (which is more than 0.0018, so zinc is in excess)		
			OR		
			M1 amount of zinc = 1.3 ÷ 65 = 0.02 (mol)		
			M2 amount of HCl that can react = 2 x 0.02 = 0.04 (mol) (which is greater than 0.0036, so zinc is in excess)		
		(ii)	M1 curve starting at origin and steeper than curve A		2
			M2 curve levelling off at same volume as curve A /at 40 cm ³		
	(b)	(i)	An explanation that links any of the following four points		4
			M1 curve B is less steep (than curve A)		
			M2 (because) the particles have less <u>kinetic</u> energy	ALLOW particles move more slowly	
			M3 so there are fewer successful collisions per unit time/less frequent successful collisions	ACCEPT less frequent collisions that exceed activation energy	
			M4 so rate of reaction is slower / reaction takes longer to complete		
			M5 no change in reacting quantities, so final volume is unchanged	ACCEPT reverse	
				argument throughout	

(ii)	An explanation that links two of the following points		2
	M1 only half the moles (of hydrochloric acid) used / (hydrochloric acid) concentration is halved		
	M2 (so) only half the volume/20 cm ³ of hydrogen/gas produced	If M1 and M2 are not scored, allow (1) mark for the idea that less HCl produces less	
	M3 hydrochloric acid is less concentrated so curve is less steep	hydrogen	
(c)	A description that refers to the following two points		2
	M1 (a catalyst) provides an alternative pathway/route M2 with a lower activation energy	IGNORE general statements about catalysts increasing rate / not being used up	
			Total 12